Abstract
The present paper discusses mathematical barriers in the development of software for preprocessing of atomistic models of dislocation networks. As a matter of fact, as yet, there are neither analytical nor numerical methods nor programs available which can be used for atomistic reconstruction of complex dislocation networks. Some of the problems to overcome are discussed in this paper. In the previous papers discussed below it was shown that a direct superposition of analytic formulae for displacements of atoms induced by single dislocations does not give possibility to hold the essential geometric properties of the resultant atomistic models. Namely, after the input of first dislocation, the lattice symmetry required to input the next dislocations is usually broken. These inaccuracies compose the mathematical barrier for atomistic reconstruction of advanced dislocation nets. A method developed here has been applied to reconstruction of the dislocation nodes localized in the copper/shaffire interface. In the present case, the partial dislocations are inserted by slips. For comparison, the junction corresponding to the stacking faults obtained by the rigid shifts of copper on the Burgers vector $\frac 1 6 \langle 112 \rangle$ are discussed.
Keywords:
dislocations, lattice distortions, finite deformations, atomistic modelsReferences
- OpenBabel – the open source chemistry toolbox, software v. 2.2.3 available at http://openbabel.sourceforge.net.
- P.M. Anderson, J.P. Hirth, J. Lothe, Theory of Dislocations, 3rd Edition, Cambridge University Press, Cambridge, 2017.
- I. Belabbas, G.P. Dimitrakopulos, J. Kioseoglou, J. Chen, J. Smalc-Koziorowska, First-principles investigation of a-line Shockley partial dislocations in wurtzite GaN: Core reconstruction and electronic structure, Modelling and Simulation in Materials Science and Engineering, 30(8): 085004, 2022, https://doi.org/10.1088/1361-651X/ac9853.
- A. Béré, A. Serra, Atomic structure of dislocation cores in GaN, Physical Review B, 65: 205323, 2002, https://doi.org/10.1103/PhysRevB.65.205323.
- A. Béré, A. Serra, On the atomic structures, mobility and interactions of extended defects in GaN: Dislocations, tilt and twin boundaries, Philosophical Magazine, 86(15): 2159–2192, 2006, https:/doi.org/10.1080/14786430600640486.
- B.A. Bilby, Continuous distribution of dislocations, [In:] I.N. Sneddon, R. Hill [Eds.], Progress in Solid Mechanics, Vol. 1, pp. 331–398, North-Holland, Amsterdam, 1960.
- J.M. Burgers, Proc. Acad. Sci. Amst., 42: 293–378, 1939.
- W. Cai, V.V. Bulatob, J. Chang, J. Li, S. Yip, Periodic image effects in dislocation modelling, Philosophical Magazine, 83(5): 539–567, 2003, https://doi.org/10.1080/0141861021000051109.
- J. Chen, P. Ruterana, G. Nouet, Multiple atomic configurations of the a edge threading dislocation in GaN, Computational Materials Science, 82(1-3): 117–119, 2002, https://doi.org/10.1016/S0921-5107(00)00754-6.
- Y. Chen et al., Interface intrinsic strengthening mechanism on the tensile properties of Al2O3/Al composites, Computational Materials Science, 169: 109131, 2019, https://doi.org/10.1016/j.commatsci.2019.109131.
- J. Cholewiński, P. Dłużewski, VECD – Visual Editor of Crystal Defects, 2012, software available at http://vecds.sourceforge.net.
- J. Cholewiński, M. Maździarz, G. Jurczak, P. Dłużewski, Dislocation core reconstruction based on finite deformation approach and its application to 4H-SiC crystal, International Journal for Multiscale Computational Engineering, 12: 411–421, 2014, https://doi.org/10.1615/IntJMultCompEng.2014010679.
- R. deWit, Theory of disclinations: IV. Straight disclinations, Journal of Research of the National Bureau of Standards—A. Physics and Chemistry, 77A(5): 607–658, 1973, https://doi.org/10.6028/jres.077A.036.
- P. Dłużewski, G. Maciejewski, G. Jurczak, S. Kret, J.Y. Laval, Nonlinear FE analysis of residual stresses induced by misfit dislocations in epitaxial layers, Computational Materials Science, 29(3): 379–395, 2004, https://doi.org/10.1016/j.commatsci.2003.10.012.
- P. Dłużewski, T.D. Young, G. Dimitakopulos, Ph. Komninou, Continuum and atomistic modeling of the mixed straight dislocation, International Journal for Multiscale Computational Engineering, 8(3): 331–342, 2010, https://doi.org/10.1615/IntJMultCompEng.v8.i3.80.
- S.V. Dmitriev, N. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang, Y. Kagawa, Atomistic structure of the Cu(111)/α-Al2O3(0001) interface in terms of interatomic potentials fitted to ab initio results, Acta Materialia, 52: 1959–1970, 2004, https://doi.org/10.1016/j.actamat.2003.12.037.
- S.V. Dmitriev, N. Yoshikawa, M. Kohyama, R. Yang, S. Tanaka, Y. Kagawa, Modeling interatomic interactions across Cu/α–Al2O3 interface, Computational Materials Science, 36: 281–291, 2006, https://doi.org/10.1016/j.commatsci.2005.03.015.
- W. Dong et al., A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part I. Model description and verification, International Journal of Plasticity, 157: 103401, 2022, https://doi.org/10.1016/j.ijplas.2022.103401.
- P. Dłużewski, J.Z. Domagala, S. Kret, D. Jarosz, M. Kryśko, H. Teisseyre, Phase-transition critical thickness of rocksalt MgxZn1−xO layers, The Journal of Chemical Physics, 154(15): 154701, 2021, https://doi.org/10.1063/5.0042415.
- F. Ernst, P. Pirouz, A.H. Heuer, HRTEM study of a Cu/Al2O3 interface, Philosophical Magazine A, 63: 259–277, 1991.
- J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New York, 1982.
- J. Kioseoglou, E. Kalesaki, L. Lymperakis, J. Neugebauer, Ph. Komninou, Th. Karakostas, Electronic structure of 1/6⟨2023⟩ partial dislocations in wurtzite GaN, Journal of Applied Physics, 109: 083511, 2011, https://doi.org/10.1063/1.3569856.
- K. Kondo, On geometrical and physical foundations of the theory of yielding, [In:] Proceedings of the 2nd Japan National Congress for Applied Mechanics, Tokyo, Vol. 2, pp. 41–47, 1952.
- E. Kröner, Continuum theory of defects, [In:] R. Balian, M. Kleman, J.P. Poiries [Eds.], Physics of Defects, pp. 215–315. Nord-Holland, Amsterdam, 1981.
- S. Liu et al., Alignment of edge dislocations – the reason lying behind composition inhomogeneity induced low thermal conductivity, Nature Communications, 16: 9775, 2025, https://doi.org/10.1038/s41467-025-64749-5.
- Y. Long, N.X. Chen, Interface reconstruction and dislocation networks for a metal/alumina interface: An atomistic approach, Journal of Physics: Condensed Matter, 20(13): 135005, 2008, 10.1088/0953-8984/20/13/135005.
- A.E.H. Love, Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927.
- L. Lymperakis, H. Abu-Farsakh, O. Marquardt, T. Hickel, J. Neugebauer, Theoretical modeling of growth processes, extended defects, and electronic properties of III-nitride semiconductor nanostructures, Physica Status Solidi B, 248: 1837–1852, 2011, https://doi.org/10.1002/pssb.201046511.
- T. Mizoguchi et al., Chemical bonding, interface strength, and oxygen K electron-energy-loss near-edge structure of the Cu/Al2O3 interface, Physical Review B, 74: 235408, 2006, https://doi.org/10.1103/PhysRevB.74.235408.
- K. Nalepka, Efficient approach to metal/metal oxide interfaces within variable charge model, The European Physical Journal B, 85: 45, 2012, https://doi.org/10.1140/epjb/e2011-10839-1.
- K. Nalepka, Symmetry-based approach to parametrization of embedded-atom method interatomic potentials, Computational Materials Science, 56: 100–107, 2012, https://doi.org/10.1016/j.commatsci.2012.01.011.
- K. Nalepka, Material symmetry: A key to specification of interatomic potentials, Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(2): 441–450, 2013, https://doi.org/10.2478/bpasts-2013-0043.
- M.J.D. Powell, A new algorithm for unconstrained optimization, [In:] J.B. Rosen, O.L. Mangasarian, K. Ritter [Eds.], Nonlinear Programming, pp. 31–65, Academic Press, New York–London, 1970.
- W.T. Read Jr., Dislocations in Crystals, McGraw-Hill, London, 1953.
- C. Scheu et al., Bonding at copper–alumina interfaces established by different surface treatments: A critical review, Journal of Materials Science, 41: 5161–5168, 2006, https://doi.org/10.1007/s10853-006-0073-0.
- S. Shi, S. Tanaka, M. Koyama, First-principles investigation of the atomic and electronic structures of α-Al2O3(0001)/Ni(111) interfaces, Journal of the American Ceramic Society, 90(8): 2429–2440, 2007, https://doi.org/10.1111/j.1551-2916.2007.01769.x.
- C. Teodosiu, A dynamic theory of dislocations and its applications to the theory of the elastic plastic continuum, [In:] A. Simmonds et al. [Eds.], Fundamental Aspects of Dislocation Theory, Vol. 2, pp. 837–876, National Bureau of Standards Special Publication 317, US Government Printing Office, Washington, DC, 1970.
- E.H. Yoffe, The angular dislocation, Philosophical Magazine, 5: 161–175, 1960.
- E.H. Yoffe, A dislocation at a free surface, Philosophical Magazine, 6: 1147–1155, 1961.
- T.D. Young, J. Kioseoglou, G.P. Dimitrakopulos, P. Dłużewski, P. Komninou, 3D modelling of misfit networks in the interface region of heterostructures, Journal of Physics D: Applied Physics, 40(13): 4084, 2007, https://doi.org/10.1088/0022-3727/40/13/027.
- W. Zhang, J.R. Smith, A.G. Evans, The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3, Acta Materialia, 50: 3803–3816, 2002, https://doi.org/10.1016/S1359-6454(02)00177-5.
- J. Łażewski et al., DFT modelling of the edge dislocation in 4H-SiC, Journal of Materials Science, 54(15): 10737–10745, 2019, https://doi.org/10.1007/s10853-019-03630-5.

